Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
p(f(f(x))) → q(f(g(x)))
p(g(g(x))) → q(g(f(x)))
q(f(f(x))) → p(f(g(x)))
q(g(g(x))) → p(g(f(x)))
Q is empty.
↳ QTRS
↳ AAECC Innermost
Q restricted rewrite system:
The TRS R consists of the following rules:
p(f(f(x))) → q(f(g(x)))
p(g(g(x))) → q(g(f(x)))
q(f(f(x))) → p(f(g(x)))
q(g(g(x))) → p(g(f(x)))
Q is empty.
We have applied [15,7] to switch to innermost. The TRS R 1 is none
The TRS R 2 is
p(f(f(x))) → q(f(g(x)))
p(g(g(x))) → q(g(f(x)))
q(f(f(x))) → p(f(g(x)))
q(g(g(x))) → p(g(f(x)))
The signature Sigma is {q, p}
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
p(f(f(x))) → q(f(g(x)))
p(g(g(x))) → q(g(f(x)))
q(f(f(x))) → p(f(g(x)))
q(g(g(x))) → p(g(f(x)))
The set Q consists of the following terms:
p(f(f(x0)))
p(g(g(x0)))
q(f(f(x0)))
q(g(g(x0)))
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
Q(g(g(x))) → P(g(f(x)))
P(f(f(x))) → Q(f(g(x)))
P(g(g(x))) → Q(g(f(x)))
Q(f(f(x))) → P(f(g(x)))
The TRS R consists of the following rules:
p(f(f(x))) → q(f(g(x)))
p(g(g(x))) → q(g(f(x)))
q(f(f(x))) → p(f(g(x)))
q(g(g(x))) → p(g(f(x)))
The set Q consists of the following terms:
p(f(f(x0)))
p(g(g(x0)))
q(f(f(x0)))
q(g(g(x0)))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
Q DP problem:
The TRS P consists of the following rules:
Q(g(g(x))) → P(g(f(x)))
P(f(f(x))) → Q(f(g(x)))
P(g(g(x))) → Q(g(f(x)))
Q(f(f(x))) → P(f(g(x)))
The TRS R consists of the following rules:
p(f(f(x))) → q(f(g(x)))
p(g(g(x))) → q(g(f(x)))
q(f(f(x))) → p(f(g(x)))
q(g(g(x))) → p(g(f(x)))
The set Q consists of the following terms:
p(f(f(x0)))
p(g(g(x0)))
q(f(f(x0)))
q(g(g(x0)))
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
Q(g(g(x))) → P(g(f(x)))
P(f(f(x))) → Q(f(g(x)))
P(g(g(x))) → Q(g(f(x)))
Q(f(f(x))) → P(f(g(x)))
The TRS R consists of the following rules:
p(f(f(x))) → q(f(g(x)))
p(g(g(x))) → q(g(f(x)))
q(f(f(x))) → p(f(g(x)))
q(g(g(x))) → p(g(f(x)))
The set Q consists of the following terms:
p(f(f(x0)))
p(g(g(x0)))
q(f(f(x0)))
q(g(g(x0)))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 4 less nodes.